BINDERLESS NPD10 / DA90

PCD tool for Carbide & hard brittle material turning

BINDERLESS NPD10
Ultimate High Precision Machining

DA90
For Carbide & Hard brittle material Roughing
Adopts Nano-polycrystalline Diamond for the cutting edge, which is binder-less, isotropic and harder than single crystal diamond.
Achieves long tool life and improved machining accuracy for carbide and hard brittle material machining compared to conventional diamond tools.

Best suited for finish machining of carbide and hard brittle material
Achieves high precision machining of carbide with nano-polycrystalline diamond, which has excellent wear resistance.

Maintains excellent dimensional accuracy over long periods
Greatly reduces the number of times that the tool must be indexed compared to previous diamond tools, improving work efficiency and reducing total cost.

Nano-polycrystalline Diamond
Nano-polycrystalline Diamond is a polycrystalline diamond that directly binds nanometer-level diamond particles at high strength without using binders. It is harder than single-crystal diamond and has no cleavability. Therefore, it enables machining of hard brittle materials such as carbides and enables new machining methods.

Hardness
Nano-polycrystalline Diamond
Single Crystal Diamond
Conventional PCD

No Anisotropy and Ultra Hard

Knoop Hardness HK(GPa)
DA90

A grade made by sintering rough-grained diamond which contains the highest amount of diamond, has excellent wear resistance for rough machining of carbide and hard brittle material. Achieves high cost performance as same performance as before through optimal design and development of mass production technology.

Best suited for rough machining of carbide and hard brittle material

Achieves stable tool life for rough machining of carbide and hard brittle material by the excellent wear resistance of rough-grained polycrystalline diamond.

Adopting NF Inserts

Achieves high cost performance as same performance as before through optimal design and development of mass production technology.

Expand stock items for carbide and hard brittle materials machining

<table>
<thead>
<tr>
<th>Grade line up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grade</td>
</tr>
<tr>
<td>Microstructure</td>
</tr>
<tr>
<td>Bonding Material</td>
</tr>
<tr>
<td>Grain Size (µm)</td>
</tr>
<tr>
<td>CBN Content (%)</td>
</tr>
</tbody>
</table>
Wear Resistance of NPD10

NPD10 shows excellent wear resistance.

[Graph showing wear resistance comparison between NPD10 and Conventional PCD]

- Part Material: Carbide (87HRA), Insert: DCMA32.51RH
- Cutting Conditions: \(v_c = 66 \text{ SFM}, f = 0.004 \text{ IPR}, a_p = 0.004 \text{ in} \) Dry

Wear Resistance of DA90

DA90 shows excellent wear resistance under rough machining conditions.

[Graph showing wear resistance comparison between DA90 and Conventional PCD]

- Part Material: Carbide (87HRA)
- Insert: NF-DCMA21.51
- Cutting Conditions: \(v_c = 66 \text{ SFM}, f = 0.004 \text{ IPR}, a_p = 0.008 \text{ in} \) Wet

Application Examples

Carbide Machining VC40 (89HRA) Die Metal Mold

- NPD10 achieved more 5 times longer tool life than conventional PCD.

<table>
<thead>
<tr>
<th>No. of Workpieces/piece</th>
<th>NPD10</th>
<th>Conv. PCD</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Insert: CCMW04X104RH (NPD10) Internal turning
- Cutting Conditions: \(v_c = 50 \text{ SFM}, f = 0.0006 \text{ IPR}, a_p = 0.003 \text{ in} \) Dry

Carbide Machining VM30 (91HRA) Die Metal Mold

- Reduced processing costs 33% by applying DA90 for roughing and NPD10 for finishing.

<table>
<thead>
<tr>
<th>Processing costs(%)</th>
<th>DA90</th>
<th>NPD10</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Insert: Rough NF-CCMA21.50.5 (DA90) Internal turning
- Cutting Conditions: Rough \(v_c = 66 \text{ SFM}, f = 0.004 \text{ IPR}, a_p = 0.004 \text{ in} \) Dry
- Finishing \(v_c = 66 \text{ SFM}, f = 0.004 \text{ IPR}, a_p = 0.008 \text{ in} \) Dry
Stock Items of NPD10

Negative Insert

<table>
<thead>
<tr>
<th>Shape</th>
<th>Cat. No.</th>
<th>Stock</th>
<th>Cutting Edge Length</th>
<th>Dimensions (mm)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>DNMA 432RH</td>
<td>433RH</td>
<td>1.8</td>
<td>19</td>
<td>12.7 4.76 5.16 0.8</td>
<td>1.2</td>
</tr>
<tr>
<td>SNMA 432RH</td>
<td>433RH</td>
<td>1.7</td>
<td>19</td>
<td>12.7 4.76 5.16 0.8</td>
<td>1.2</td>
</tr>
<tr>
<td>VNMA 432RH</td>
<td>433RH</td>
<td>1.8</td>
<td>19</td>
<td>9.525 4.76 3.81 0.8</td>
<td>1.2</td>
</tr>
</tbody>
</table>

Positive Insert

<table>
<thead>
<tr>
<th>Shape</th>
<th>Cat. No.</th>
<th>Stock</th>
<th>Cutting Edge Length</th>
<th>Dimensions (mm)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CCMA 03X102RH</td>
<td>03X104RH</td>
<td>1.3</td>
<td>3.5</td>
<td>1.4 1.9 0.2</td>
<td>0.4</td>
</tr>
<tr>
<td>CCMA 04X102RH</td>
<td>04X104RH</td>
<td>1.7</td>
<td>4.3</td>
<td>1.8 2.3 0.2</td>
<td>0.4</td>
</tr>
<tr>
<td>CCMA 21.50.5RH</td>
<td>21.51RH</td>
<td>1.7</td>
<td>6.35</td>
<td>2.38 2.8 0.2</td>
<td>0.4</td>
</tr>
<tr>
<td>CCMA 32.50.5RH</td>
<td>32.51RH</td>
<td>1.7</td>
<td>9.525</td>
<td>3.97 4.4 0.2</td>
<td>0.8</td>
</tr>
</tbody>
</table>

Shape of a rounded corner is cylindrical.

Stock Items of DA90

Negative Insert

<table>
<thead>
<tr>
<th>Shape</th>
<th>Cat. No.</th>
<th>Stock</th>
<th>Cutting Edge Length</th>
<th>Dimensions (mm)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>NF-DNMA 432</td>
<td>433</td>
<td>2.0</td>
<td>19</td>
<td>12.7 4.76 5.16 0.8</td>
<td>1.2</td>
</tr>
<tr>
<td>NF-SNMA 432</td>
<td>433</td>
<td>2.4</td>
<td>19</td>
<td>12.7 4.76 5.16 0.8</td>
<td>1.2</td>
</tr>
<tr>
<td>NF-VNMA 432</td>
<td>433</td>
<td>1.9</td>
<td>19</td>
<td>9.525 4.76 3.81 0.8</td>
<td>1.2</td>
</tr>
</tbody>
</table>

Positive Insert

<table>
<thead>
<tr>
<th>Shape</th>
<th>Cat. No.</th>
<th>Stock</th>
<th>Cutting Edge Length</th>
<th>Dimensions (mm)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>NF-CCMA 03X102</td>
<td>03X104</td>
<td>1.1</td>
<td>3.5</td>
<td>1.4 1.9 0.2</td>
<td>0.4</td>
</tr>
<tr>
<td>NF-CCMA 04X102</td>
<td>04X104</td>
<td>1.3</td>
<td>4.3</td>
<td>1.8 2.3 0.2</td>
<td>0.4</td>
</tr>
<tr>
<td>NF-CCMA 21.50.5</td>
<td>21.51</td>
<td>1.7</td>
<td>6.35</td>
<td>2.38 2.8 0.2</td>
<td>0.4</td>
</tr>
<tr>
<td>NF-CCMA 32.50.5</td>
<td>32.51</td>
<td>1.7</td>
<td>9.525</td>
<td>3.97 4.4 0.2</td>
<td>0.8</td>
</tr>
</tbody>
</table>

Shape of a rounded corner is cylindrical.
Sumitomo Electric Carbide, Inc. Headquarters
1001 Business Center Drive
Mount Prospect, IL 60056-2181
P.O. Box 545, Mt. Prospect, IL 60056-0545
Phone: (800) 950-5202
Phone: (847) 635-0044
Fax: (847) 635-9335
http://www.sumicarbide.com

Detroit Branch
14496 Sheldon Road #230
Plymouth, MI 48170
Phone: (800) 239-5177
Phone: (734) 451-0200
Fax: (734) 451-5338

Sumitomo Electric
Tool Engineering Center
5637 S. Westridge Drive
New Berlin, WI 53151
Phone: (800) 950-5202

Huntsville Branch
6700 Odyssey Drive
Suite 211
Huntsville, AL 35806
Phone: (256) 971-1203
Fax: (256) 971-1205

Indiana Branch
595 S. Emerson Avenue
Suite 100
Greenwood, IN 46143
Phone: (317) 859-1601

Torrance Branch
21241 South Western Avenue
Suite 120
Torrance, CA 90501
Phone: (800) 950-5202
Fax: (310) 782-0211

Sumitomo Carbide Canada, Inc.
150 Research Lane
Unit #210
Guelph, Ontario N1G 4T2
Canada
Phone: (519) 265-6050
Phone: (844) 211-6050

for more information log onto:
www.sumicarbide.com