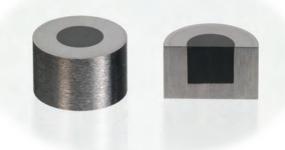


Sumitomo Electric Carbide, Inc.

Materials Group Products

SUMIDIA WE


SUMICRYSTAL

SUMITOMO ELECTRIC GROUP

SUMIDIA WD

"SUMIDIA WD" is firmly bonded polycrystalline diamond developed through the use of our original ultra high-pressure sintering technology, which provides both strong and wear resistant wire drawing material.

Characteristics

SUMIDIA WD has stable quality superior to natural diamond.

Excellent breakage resistance

Because of its firmly bonded polycrystalline structure, SUMIDIA WD eliminates the cleavage faults found in natural diamond.

Excellent wear-resistance

SUMIDA WD offers superior wear resistance, uniform wear and excellent fracture strength.

High quality polished surface

The homogeneity of sintered body is implemented in our original technology. The diamond content ratio in sintered body is increased and each diamond grain is firmly bonded. SUMIDIA WD has a high quality polished surface like natural diamond.

Series

SUMIDIA WD has 3 series such as with support ring, and with heat resistance

WD700

The WD700 series are self-supported die blanks. These blanks are suitable for all types of wiredrawing applications especially where cost-cutting is required.

WD900

The WD900 series are reinforced by a special outer ring. This feature makes it possible to draw not onlycopper and aluminum wire but high tensile steel wire as well.

WD800 (Heat-Resistant type)

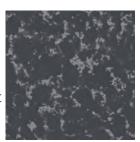
The WD800 series are self-supported thermally stable blanks. These blanks are especially suited for applications which require high temperature in mounting and need high heat resistance in drawing.

Grades

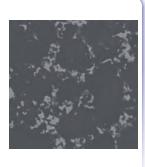
Grade

The F grade WD has a ultra fine diamond grain size. It is suitable for drawing dies that require a high quality surface finish or high fracture strength.

The S grade WD has fine diamond grains. It is the standard grade of small diameter die blanks with supprt ring.



The M grade WD is a middle diamond grain size. It is effective for a wide variety of applications offering high finish with good wear resistance


Grade

The C grade WD is a coarse diamond grain size. It is suitable for drawing dies that require high wear-resistance.

The E grade WD is an extra-coarse diamond grain size.

- SUMIDIA WD HAS 5 GRADES: F, S, M, C, and E.
- Available grades are limited by the shape and size

• WD800 Series

WD800 Series, binder metal removed from WD700 series, is high heat resistant material.

Items

ADDMA		Dime	ensions (mm)	Concentricity	Maximum	A	vailab	ole gra	ain siz	ze	Shape	
No.	Product No.			,	(mm)	Hole Size (mm)	F	S	М	С	Е	Shape	
28.1		φd	φD	t		*3	1	3	5	12	25		
Self-suppor	ted die blanks												
D6	WD705	2.5	_	1.0	_	0.5	0	_	0	0	_		
D12	WD710	3.2	_	1.5	_	1.0	0	_	0	0	_		
D15	WD715	5.2	_	2.5	_	1.5	0	_	0	0	_		
D18	WD720	5.2	_	3.5	_	2.0	0	_	0	0	0		
Self-Suppo	rted die blanks	with the	rmal sta	bility								<u>φd</u>	
D6	WD805	2.5	_	1.0	_	0.5	0	_	0	0	_	ļt	
D12	WD810	3.2	_	1.5	_	1.0	0	_	0	0	0		
D15	WD815	5.2	_	2.5	_	1.5	0	_	0	0	_		
D18	WD820	5.2	_	3.5	—	2.0	0	_	0	0	_		
Supported	Supported die blanks												
D12	WD910	1.5	4.00	1.5	0.20	0.8	0	\bigcirc	0	0	_	φD	
D15	WD915	4.0	8.12	2.3	0.25	1.8	0	0	0	0	_		
D18	WD920	4.0	8.12	2.9	0.25	2.3	0	0	0	0	0		
D21	WD925	7.0	13.65	4.0	0.35	3.5	-	0	0	0	0		
D24	WD930	7.0	13.65	5.3	0.40	4.6	-	0	0	0	0	ring	
D27	WD940	9.0	14.50	7.5	0.40	5.4	-	_	0	0	0	φd ,	
D27	WD945	13.0	24.13	9.0	0.33	5.8	-	_	0	0	0	t	
D30	WD950	13.0	24.13	12.0	0.33	7.6	-		0	0	\bigcirc	Standard	
D33	WD960	16.0*5	24.13	16.0	0.33	10.5	-		_	0	0	(WD910~950/975~995)	
D36	WD970	19.0*5	35.00	19.0	0.60	12.7	_	_	_	_	0	ιφdι	
	WD975*6	25.0	42.00	20.0	0.60	15.7	-	—	_	_	0	φ ^φ φ ^φ	
	WD980*6	30.0	47.00	22.0	0.60	19.0	_	_	_	_	0	t	
	WD990*6	40.0	67.00	25.0	0.75	25.7	_	_	_	_	0	Press fit design	
	WD995*6	45.0	67.00	27.0	0.75	29.0	-	—	-	-	\bigcirc	(WD960/WD970)	
Tungsten ca	arbide supporte	ed die bla	anks wit	h back	support							ι φd	
D12	WD910MW	1.5	4.00	3.5 _{**4} (1.5)	0.20	0.8	_	_	0	_	_		
D15	WD915MW	4.0	8.12	4.3 _{**4} (2.3)	0.25	1.8	_	_	0	_	_	Back supported design	
D18	WD920MW	4.0	8.12	4.9 _{**} 4 (2.9)	0.25	2.3	_	_	0	_	_	(WD910~920MW)	

○:Available —: Not available

%1 Die size standard by American Diamond Die Manufaturers Association.

*2 Concentricity shows the difference between the maximum width and the minimum width of the carbide support ring.

*3 The maximum hole size recommended for soft wire.

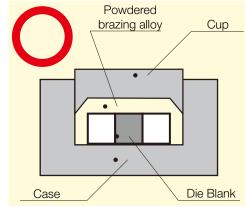
In case of hard wire drawing, the maximim hole size should not exeed 70 percent of this diameter.

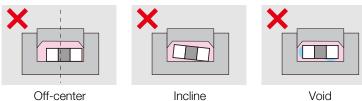
%4 $\,$ The number of () shows tentative thickness of diamond.

*5 The upper diameter of diamond is different from the lower diameter.

%6 The blank has the inspection hole (φ 5~8mm) in the center.

Items

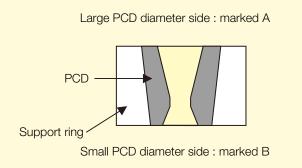

		Diamo	ond Micr (A.P.S.)	o Size	Nominal Dime	ensions (mm)			
ADDMA No.	Product No.	Grain Size		, ,		Grain Size		Diamond Thickness	Shape
**1		1	5	12	Diameter (d)	(t)			
SumiDisk (H	High Density PC	Tungsten Carbide							
D6	RX55/ 1.0	F	М	С	55.0	1.0			
D12	RX55/ 1.5	F	М	С	55.0	1.5	Diamond		
D15	RX55/ 2.5	F	М	С	55.0	2.5	φd		
D18	RX55/ 3.5	F	М	С	55.0	3.5			



Notice in Processing

Precaution for mounting process

- Die blanks should be placed at the center of SUS case.
- Die blanks should be set parallel to the case.
- Do not allow space between brazing alloy and blank. (It is effective to apply pressure during heating or immediately after heating.)

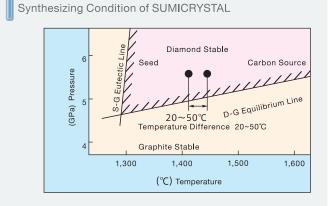


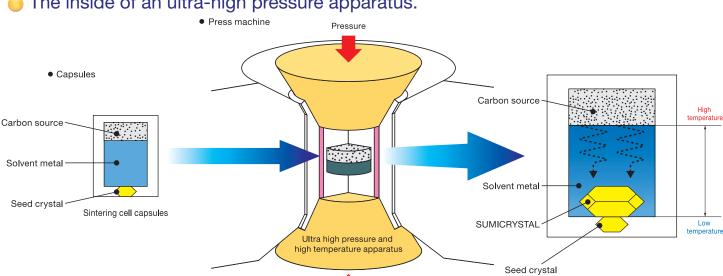
Off-center

Incline

Precaution for use about shrink fit type (WD960, 970).

WD960, 970 type adopt original design which PCD is pressed into support ring after sintering to avoid horizontal crack while machining. PCD diameter is different each side. (about 3%)


- PCD is pressed into support ring in the direction from side A to side B. Please use as Side A is Bell side, and Side B is Exit side.
- •WD960, 970 can use re-insertion to support ring when PCD slip out.
- •PCD and support ring are not combined so please keep the radial thickness of PCD more than 1.0mm.


SUMICRYSTAL

"SUMICRYSTAL" is synthetic single crystal diamond which Sumitomo Electric succeeded in mass production for the first time in the world. "SUMICRYSTAL" is manufactured under severe quality control has stable quality, so it is suitable for industrial materials.

Synthesis of SUMICRYSTAL

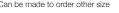
Large high quality single crystal diamonds are synthesized under ultra-high pressure (50,000 atmospheres) and high temperature (over 1,300 $^{\circ}$ C). The figure to the right shows the inside of an ultra-high pressure apparatus. A temperature gradient is created in the interior of the heater. This gradient is used to melt the carbon source into a molten solvent metal. This process allows the diamond to grow on a seed crystal. In order to accurately synthesize large high quality crystal, it is necessary to have purity materials and advanced technology for maintaining synthesizing conditions constant over a long period of time.

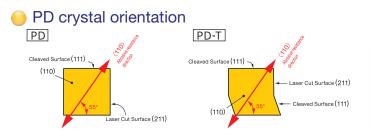
The inside of an ultra-high pressure apparatus.

Pressure

Sumicrystal PD dresser blanks are single crystal diamonds processed into the shape of a long, thin prism. These Sumicrystals provide high precision dressing through reliable performance and long tool life.

PD


Characteristics


Revolutionary Unique Shape

The unique shape of the PD blanks gives the diamond consistent cross-section. This allows uniform diamond surface throughout the dressing process. The alongated shape also drastically reduces diamond pull-out.

Standard PD Items

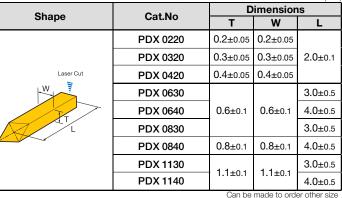
Stanuaru PD Items				(mm
Shape	Cat.No	D	imensior	IS
Shape	Calino	Т	W	L
	PD 0220	0.0.005	0.0.0.05	2.0~2.5
	PD 0230K	0.2±0.05	0.2±0.05	2.0~2.5
	PD 0420	0.4±0.05	0.4±0.05	2.0~2.5
	PD 0440K	0.4±0.05	0.4±0.05	2.0~2.5
Laser Cut	PD 0630K			3.0~4.0
VV P	PD 0640K	0.6±0.1	0.6±0.1	4.0~5.0
TT L	PD 0650K			5.0~
	PD 0830K			3.0~4.0
	PD 0840K	0.8±0.1	0.8±0.1	4.0~5.0
	PD 0850K			5.0~
	PD 1130K	1.1±0.1	1.1±0.1	3.0~4.0
	PD 1140K	1.1±0.1	1.1±0.1	4.0~5.0
Laser Cut Surface	PD 0630TK	0.6.0.1	0.6±0.1	3.0~4.0
	PD 0640TK	0.6±0.1	0.0±0.1	4.0~5.0
(110) Cleaved Surface	PD 0830TK	0.8±0.1	0.8±0.1	3.0~4.0
	PD 0840TK	0.0±0.1	0.0±0.1	4.0~5.0
+ <u>··</u> +	PD 1130TK	1.1±0.1	1.1±0.1	3.0~4.0

😑 КК Туре

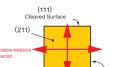
 $\rm A\bar{l}$ the above standard PD items except PD0220 and PD0420 are available in "KK Type" which both end-face lasr cuts.

End-face Laser Cut

When ordering KK Type, please include the type code (="KK") after the product number. (E.g. PDOCOCKK, PDOCOCTKK)


PDX

Characteristics


New Product with a Modified Face Orientation

- (1) Face orientation is a (211) face which increases life of the product
- (2) Abrasive resistance direction runs parallel with (111) face, facilitating setting of a blank when manufacturing dressers.

Standard PDX Items

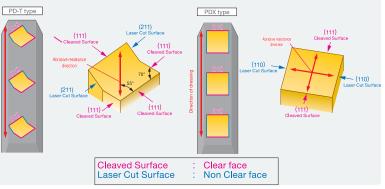
PDX crystal orientation

Laser Cut Surface (110)

(mm

📄 К Туре

All the above standard PDX items except PD0220, PDX0320, and PDX0420 are available in "KK Type" which both end-face lasr cuts.



When ordering K Type, please include the type code (="K") after the product number. (E.g. PDXOCOCK)

Method of setting Dresser

Laser Cut

The dresser blanks should be set to ware-resistant direction in producing the dressing using PD and PD-T

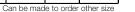
Sumicrystal PDXC products provide stable performance as forming dresser materials.

PDXC

Characteristics

- (1) Proximity of highly wear-resistant (211) face to dressing face provides longer tool life.
- (2) Unique shape provides stable clamp strength when used as a dresser. This also prevents diamond pull-out during dressing.
- (3) Standardized material dimensions ensure easy setting when making dressers.

With today's ever advancing level of technology, there has been an astounding growth in the demand for ultraprecision machining processes, for machining products such as memory disks and polygon mirrors. To meet this growing need Sumitomo Electric has developed Sumicrystal UP blanks to provide and reliability required for high pi


UP

Characteristics

- (1) High Quality and Reliable Performance UP blanks are stable with good wear and chipping resistance.
- (2) Reduce Polishing to form the crystal orientation and the size of the blanks are standardized to allow easy shaping of the cutting edge.

Standard Type Items

Shape	Cat.No		Dimen	sions	(mm)
Shape	Calino	L	W	C1,C2	Т
	UP 282512	2.8~3.5	2.5~3.5	~0.8	1.2± 0.1
	UP 282515		2.0 0.0	0.0	1.2±0.1
	UP 300707		0.7~1.0		0.7±0.1
	UP 301010		10 15		1.0 ±0.1
	UP 301015		1.0~1.5		1.5 ±0.1
	UP 301407	20.25	1.4~1.7	~0.3	0.7±0.1
	UP 301415	3.0~3.5	1.4~1.7		1.5 ±0.1
	UP 301512		1.5~1.8		1.2±0.1
W	UP 302012		2.0~3.0		
	UP 303015		3.0~4.0		1.5 ±0.1
C ₂	UP 333014	3.3~4.0	3.0~4.0	~0.9	1. 4±0.1
	UP 353510		3.5~4.0	~0.4	1.0±0.1
	UP 353514	3.5~4.0			1. 4±0.1
	UP 353517	3.3~4.0			1.7±0.1
	UP 351717		1.7~2.0		1.7±0.1
	UP 401008	3.95~4.05	0.95~1.05	~0.5	0.75±0.1
	UP 401010	4.0~4.5	1.0~1.3	~0.6	0.9±1.1
	UP 452417	4.5~4.8	2.4~2.7		1.7±0.2
	UP 454510	4 5 5 0	4 5 5 0	~0.8	0.9±.11
	UP 454515	4.5~5.0	4.5~5.0		1.5±0.2
	UP 501008	50 5 F	1.0~1.3	0.0	0.7±0.2
	UP 501010	0.0~0.5		~0.6	0.9±1.1

mm)						
Chana	Cat.No	Dimensions				
Shape	Catino	Т	W	L		
₩ I	PDXC 08	0.8±0.1				
	PDXC 11	1.1±0.1	0.0	2.5		
ι	PDXC 15	1.5±0.1	2.0	2.5		
	PDXC 18	1.8±0.1				

Can be made to order other size

(mm)

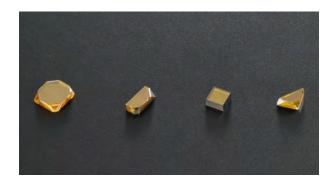
ce

Rectangular parallelopiped type surrounded by (100) faces.

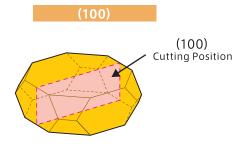
Economy Type

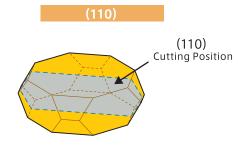
Economy type with which the periphery face remain unchaged. Features include large size and low cost.

Economy Type Items


Shana	Cat.No	Dimer	nsions
Shape	Calino	øD	Т
	UP 2010	2	1.0
	UP 2012	2	1.2
	UP 2510		1.0
	UP 2512	2.5	1.2
	UP 2515		1.5
	UP 3012	- 3	1.2
¢D (100)	UP 3015	3	1.5
	UP 3512	3.5	1.2
Т	UP 3515	3.5	1.5
	UP 4012		1.2
	UP 4015	4	1.5
	UP 4020		2.0
	UP 4512		1.2
	UP 4515	4.5	1.5
	UP 4520		2.0
	UP 5012		1.2
	UP 5015	5	1.5
	UP 5020		2.0

Can be made to order other size


the high performar	nce 🥑
recision cutting to	ols.
	Standard Typ
	Rectangular p


Half-cut Sumicrystal UP blanks are UP economy type blanks that have been cut in half following the (100) face or (110) face.

Characteristics

- (1) Machining loss is reduced due to the smaller volume of material removed during polishing when making tools.
- (2) Blank shape is close to that of a completed tool, allowing material cost savings.
- (3) Cut face is a smooth, lasered surface.

(1.1.0) -

(100) T (100)

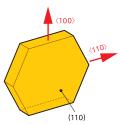
Shape	Cat.No	Dime	nsions	Shape	Cat.No	Dime	nsions
Shape	Catino	øD	Т	Shape	Calino	øD	Т
	UP 2010 (100) 1/2	2.0	1.0		UP 2010 (110) 1/2	2.0	1.0
	UP 2012 (100) 1/2	2.0	1.2		UP 2012 (110) 1/2	2.0	1.2
	UP 2510 (100) 1/2		1.0		UP 2510 (110) 1/2		1.0
	UP 2512 (100) 1/2	2.5	1.2		UP 2512 (110) 1/2	2.5	1.2
	UP 2515 (100) 1/2		1.5		UP 2515 (110) 1/2		1.5
	UP 3010 (100) 1/2		1.0		UP 3010 (110) 1/2		1.0
	UP 3012 (100) 1/2	3.0	1.2		UP 3012 (110) 1/2	3.0	1.:
	UP 3015 (100) 1/2		1.5		UP 3015 (110) 1/2		1.
	UP 3510 (100) 1/2		1.0		UP 3510 (110) 1/2		1.
φD	UP 3512 (100) 1/2	2.0	1.2		UP 3512 (110) 1/2	2.5	1.
T	UP 3515 (100) 1/2		1.5		UP 3515 (110) 1/2		1.
	UP 4010 (100) 1/2		1.0		UP 4010 (110) 1/2		1.
~	UP 4012 (100) 1/2	10	1.2		UP 4012 (110) 1/2	4.0	1.
	UP 4015 (100) 1/2	4.0	1.5		UP 4015 (110) 1/2		1.
	UP 4020 (100) 1/2		2.0		UP 4020 (110) 1/2		2.
	UP 4510 (100) 1/2		1.0		UP 4510 (110) 1/2		1.0
	UP 4512 (100) 1/2	4.5	1.2		UP 4512 (110) 1/2	4.5	1.:
	UP 4515 (100) 1/2	4.5	1.5		UP 4515 (110) 1/2	4.5	1.
	UP 4520 (100) 1/2		2.0		UP 4520 (110) 1/2		2.
	UP 5010 (100) 1/2		1.0		UP 5010 (110) 1/2		1.
	UP 5012 (100) 1/2	5.0	1.2		UP 5012 (110) 1/2		1.
	UP 5015 (100) 1/2	5.0	1.5		UP 5015 (110) 1/2	5.0	1.
	UP 5020 (100) 1/2		2.0		UP 5020 (110) 1/2		2.

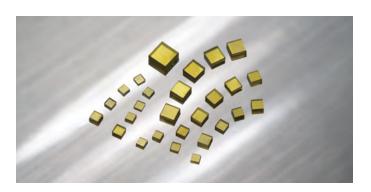
Sumicrystal UPT products are tool materials that have two-point faces ((110) faces) as their main faces.

UPT

Characteristics

- (1) Can be used as is in applications where tools would previously have been made using natural diamonds, thanks to a two-point face ((110) face) that can be used as a table face.
- (2) Unique shape only requires the removal of a small volume of material when used as a tool edge making efficient machining possible.


(mm)


Standard Items

Chana	Cat Na	Dimensions			
Shape	Cat.No	Т	W	L	
(L/2) Upper	UPT 3010	0.8±0.1	20	0.5	
	UPT 3012	1.1 ±0.1	3.0	2.5	
	UPT 4010	1.5±0.1	4.0	3.0	
	UPT 4012	1.8±0.1	4.0	3.0	

Can be made to order other size

UPT crystal Orientation

CD

Characteristics

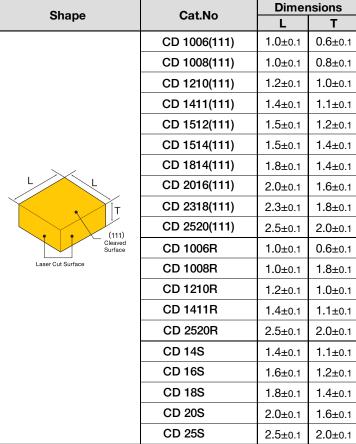
(1) High Quality and Reliable Performance

CD blanks are a pure form of diamond, which is virutally free of impurities, inclusions and cracks that are commonly found in natural diamonds.

Furthermore, the process of inspecting and selecting of crystals can be eliminated.

(2) Excellent Fracture Resistance Cracking and fracturing of the diamond during wire drawing is greatly reduced.

(3) Precise Crystal Orientation


The top and bottom faces are in the (111) orientation and the degree of divergence in the orientation is less than 1°. This is a major determinate of die life.

(4) Grinding is Not Necessary

Because the top and bottom faces are made parallel by cleavage, further grinding is eliminated.

Sumicrystal CD blanks are single crystal diamond wire drawing die blanks that feature the optimum shape and crystal orientation for wire die applications. The high quality and reliability of the CD blanks provide excellent productivity.

Standard Items

(mm

SumiBoron is a polycrystalline cubic boron nitride cutting tool material that is comprised of a PCBN layer and cemented tungsten carbide substrate. Unlike diamond, CBN is stable under conditions of high temperature up to 1000°C normally seen when machining hardened ferrous, superalloy or nodular iron materials.

*Ask us about our economy type blanks

SumiBORON® PCBN Blanks

Grade	BNX10	BN250	BN305	BNX20	BN500	BNX25	BN700
CBN Content %	50	60	60	60	65	65	90-95
CBN Crystal Size (Microns A.P.S.)	4	1	1	3	4	3	2
Primary Binder Material	Titanium Nitride	Titanium Nitride	Titanium Nitride	Titanium Nitride	Titanium Nitride	Titanium Nitride	Co based alloy
Vickers Hardness (Hv)	2800-3000	3200-3400	3300	3200-3400	3500-3800	2900-3100	4000-4300
TRS Value (kg. / mm²)	85	105	125	105	105	105	125
Recommended for machining	•High speed continuous hardened steel finish	•Light & medium interrupted hardened steel	•Severely interrupted hardened steel	•High speed machining of bearing steel (ex. 8620)	•Nodular iron •Gray cast iron •Alloyed iron	 High speed continuous and interrupted Wet/dry hardened steel 	Powdered metal Ni/Co based superalloy Ni-hard iron

SumiDIA® DA Blanks

Grade	DA2200	DA150	DA90
Average Diamond	0.5	5	50
Vickers Hardness	9,000-10,000	10,000-12,000	10,000-12,000
T.R.S. (kg./mm ²)	250	200	110
	High Density Ultra-Fine Grain	Fine Grain Diamond	Coarse Grain Diamond
Product Description	Diamond High degree of toughness and superior wear resistance 	High abrasion resistance Excellent tool edge sharpness	• Ultra high abrasion resistance
Machining Applications	Recommended for Cutting:	Recommended for Cutting:	Recommended for Cutting:
• Turning	Plastics	· Low and medium silicon	High silicon aluminum
• Milling	• Wood	aluminum	• Graphite
• Boring	Aluminum and copper	· Copper	· Aluminum/gray iron bimetal
• Drilling	High and low silicon aluminum	 Fiberglass 	· Ceramics
 Sawing 		• Carbon	 Tungsten carbide
		· Wood - plywood fliberboard	· Kevlar
		and hardwoods	

Recommended Running Conditions

Material	Application	SFM	IPR	D.O.C	First Choice	Second Choice	
Induction Hardened Steel	Continuous	300-700	0.004-0.006	0.020"	BNX10	BNX20	
Induction Hardened Steel	Interuption (Dry)	300-700	0.004-0.006	0.020"	BN250	BNX25/BN305	
Carburized Hardened Steel/	Continuous	250-600	0.004-0.006	0.020"	BNX10	BNX20	
Bearing Steel	Continuous	250-600	0.004-0.008	0.020	DINATU	DINAZU	
Carburized Hardened Steel/	Interuption (Dry)	300-600	0.004-0.006	0.020"	BN250	BNX25/BN305	
Bearing Steel	interaption (Dry)	300-000	0.004-0.000	0.020	DIVEOU	DINAZJ/ DINOUJ	
Die Steel High Speed Steel	Continuous	150-500	0.004-0.006	0.020"	BNX20	BNX10	
Die Steel High Speed Steel	Interuption (Dry)	150-350	0.004-0.006	0.020"	BN250	BNX25/BN305	
Gray Cast Iron	Continuous &	800-2300	0.004-0.006	0.040"	BN500	BN700	
Chay Cast IIOn	Interupted	000 2000	0.004 0.000	0.040	BN000		
Nodular Cast Iron	Continuous &	500-1500	0.004-0.006	0.040"	BN500	BN700	
	Interupted	000 1000	0.004 0.000	0.040	BINGOO	BITIO	
Ductile Iron	Continuous &	300-900	0.004-0.006	0.040"	BN500	BN700	
	Interupted	300-300	0.004-0.000	0.040	DINOOD	BIN700	
Powdered Metals	Continuous &	400-1000	0.004-0.006	0.040"	BN700		
	Interupted	400-1000	0.004-0.000	0.040	DI 1700	-	
Chilled Cast Iron	Continuous &	100-300	0.004-0.006	0.040"	BN250	BN700	
	Interupted	100 000	0.004-0.000	0.040	Bi 1200		

GLOBAL SUPPORT. GLOBAL SOLUTIONS.

Contact U.S.A. Materials Group : materialg@sumicarbide.com

Sumitomo Electric Carbide, Inc. Headquarters

1001 Business Center Drive Mount Prospect, IL 60056-2181 P.O. Box 545, Mt. Prospect, IL 60056-0545 Phone: (800) 950-5202 Phone: (847) 635-0044 Fax: (847) 635-7866 Email: materialg@sumicarbide.com

Huntsville AL Branch

6700 Odyssey Drive Suite 211 Huntsville, AL 35806 Phone: (256) 971-1203 Fax: (256) 971-1205

Torrance CA Branch

21241 South Western Avenue Suite 120 Torrance, CA 90501 Phone: (310) 972-7118 Fax: (310) 782-0211

